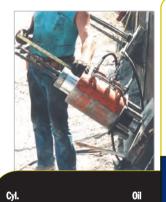
- · Interchangeable piston head inserts (see page 41) provide versatility of application.
- · Built-in safety feature prevents overpressurization of the retract circuit.
- · Plated piston rod resists wear: superior packings provide high cycle life without leakage.
- · Corrosion-resistant standpipe has "Power Tech" treatment (see page 8).
- Each cylinder has 9796 3/8" NPTF female half couplers. The 60 ton thru 200 ton steel models are equipped with removable carrying handles.


Center Hole CYLINDERS RH SERIES

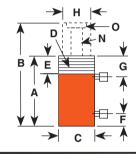
30-200 Ton Double-Acting,

Ideal for pulling and tensioning of cables, anchor bolts, forcing screws.

Stroke

(in.)

Cap.


(tons)

Order

No.

Cap.

(cu.in.)

ASME B30.1 10,000 PSI

A	В	C	D	Е	F	G	Н	N
Re-	Ex-			Collar	Base	Cylinder	Piston	Center
tracted	tended	Outside	Collar	Thread	to	Top to	Rod	Hole '
Height	Height	Dia.	Thread	Length	Port	Port	Dia.	Dia.
(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
71/	101/	/13/	None	None	1	15/.	21/.	19/

Insert	Mounting	Cyl	inder	lr	iternal	Ton				
Thread	Holes and	Effe	ective	P	ressure	10,0	000	Prod		
Size	Bolt Circle	A	rea	а	t Cap.	p:	si	Wt		
(in.)	(in.)	(se	q.in.)		(psi)	(ir	(lbs.)			
		Push	Pull	Push	Pull	Push	Pull			
2-12	3/ ₈ -16x3 ⁵ / ₈	5.89	3.38	10.200	8.876	29.5	16.9	29.8		

1 4011	110			1 4011	1 911												1 991		1 4011		1 4011		
30	15	3	RH303	17.6	10.2	$7^{1}/_{16}$	$10^{1}/_{16}$	$4^{3}/_{4}$	None	None	1	$1^{5}/_{8}$	$2^{1}/_{2}$	$1^9/_{32}$	2-12	$^{3}/_{8}$ -16x3 $^{5}/_{8}$	5.89	3.38	10,200	8,876	29.5	16.9	29.8
30	15	6	RH306D	35.34	20.28	111/16	$17^{1}/_{16}$	$4^{3}/_{4}$	None	None	1	$1^{5}/_{8}$	$2^{1}/_{2}$	$1^{17}/_{64}$	2-12	$\frac{7}{16}$ -20x3 $\frac{5}{8}$	5.89	3.38	10,200	8,876	29.5	16.9	45
30	20	$10^{1}/_{8}$	RH3010	66	41	$17^{1}/_{4}$	$27^3/_8$	$4^{1}/_{2}$	$4^{1}/_{2}-12$	$1^{5}/_{8}$	$1^{3}/_{4}$	$3^3/_{16}$	$2^{3}/_{8}$	$1^{5}/_{16}$	1 ⁷ / ₈ -16	None	6.54	4.04	9,174	9,901	32.7	20. 2	61
60	25	4	RHA604D	49.2	20.6	$9^{1}/_{2}$	$13^{1}/_{2}$	7	None	None	$1^9/_{16}$	$2^{1}/_{4}$	4	$2^{1}/_{8}$	3-12	$\frac{1}{2}$ -13x5 $\frac{1}{8}$	12.31	5.15	9,750	9,709	61.5	27.7	35.6
60	25	5	RH605*	61.55	25.77	$9^{1}/_{2}$	$14^{1}/_{2}$	$6^{17}/_{32}$	None	None	1	$1^{3}/_{4}$	4	$2^{1}/_{8}$	3-12	$^{1}/_{2}$ -13x5 $^{1}/_{8}$	12.31	5.15	9,750	9,709	61.5	27.7	73
60	40	$10^{1}/_{8}$	RH6010*	133	87	18 ¹ / ₁₆	$28^3/_{16}$	$6^{1}/_{4}$	61/4-12	$1^{7}/_{8}$	$2^{1}/_{8}$	$3^{7}/_{32}$	$3^{5}/_{8}$	$2^{1}/_{8}$	3-16	None	13.14	8.59	9,132	9,313	65.7	42.9	120
100	45	$1^{1}/_{2}$	RH1001*	32.1	14.2	$6^{1}/_{2}$	8	$8^{3}/_{8}$	None	None	11/4	$2^{5}/_{16}$	5	$3^9/_{64}$	4-16	⁵ / ₈ -11x7	21.39	9.43	9,350	9,544	106.9	47.1	85
100	50	6	RH1006*	120.2	65.6	$12^{3}/_{8}$	$18^{3}/_{8}$	$7^{1}/_{4}$	None	None	$1^{15}/_{32}$	$2^{21}/_{64}$	$4^{3}/_{8}$	$2^{1}/_{16}$	None	$\frac{1}{2}$ - 13x5 $\frac{1}{2}$	20.03	10.93	9,986	9,150	100.1	54.7	95
100	45	$10^{1}/_{8}$	RHA1008D)	Cor	ntact fac	tory for	details	and ava	ilability	,												

100 45 $10^{1}/_{8}$ **RH10010*** 216.6 95.5 $19^{1}/_{2}$ $29^{5}/_{8}$ $8^{1}/_{2}$ $11/_{2}$ $2^{1}/_{4}$ $2^{1}/_{2}$ $3^{29}/_{64}$ $5^{1}/_{2}$ $3^{29}/_{64}$ $4^{1}/_{2}$ 12 None 21.39 9.43 9,350 9,544 106.9 47.1 240 **150 70** 5 **RH1505*** 150.9 73.6 $12^{1}/_{4}$ † $17^{1}/_{4}$ $8^{1}/_{2}$ None None $1^{15}/_{32}$ $2^{11}/_{16}$ $5^{1}/_{2}$ $2^{9}/_{16}$ None None 30.1 14.7 9,937 9,524 150.9 73.6 148 RH1508* 239.6 127.2 13³/₄ 21³/₄ 9³/₄ None None 1³5/₆₄ 2¹³/₃₂ 6 3⁵/₃₂ 5-12 None 29.95 15.9 10,015 9,434 149.8 79.5 227

150 75 8 RHA1508D* Contact factory for details and availability

200 75 8 **RH2008*** 323.6 127.6 $16^{1}/_{16}$ $24^{1}/_{16}$ $10^{3}/_{4}$ None None $2^{1}/_{4}$ $3^{7}/_{32}$ $7^{1}/_{2}$ $4^{1}/_{16}$ 6-12 $1^{1}/_{4}$ -7 x $7^{3}/_{4}$ 40.45 15.95 9,888 9,404 202.3 79.8 311 200 75 8 RHA2008D* Contact factory for details and availability

Aluminum

CYLINDER/PUMP MATCHING > ACCESSORY/REPAIR PUMP/CYLINDER SETS HYDRAULIC ACCESSORIES

VALVES

TECH DATA

Page 6

Page 36

Page 61

Page 129

Page 237

^{*} Supplied with carrying handles.

[†] Measured with 3/4" high serrated insert installed. See pages 36-41 & 120-133 for hydraulic accessories.